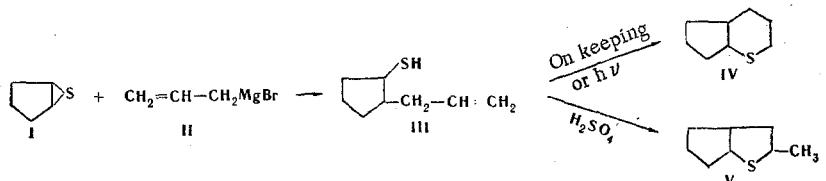


SYNTHESIS OF HETEROCYCLIC SULFIDES.

III. SYNTHESIS OF 1-THIABICYCLO[4,3,0]NONANE AND 2-METHYL-1-THIABICYCLO[3,3,0]OCTANE

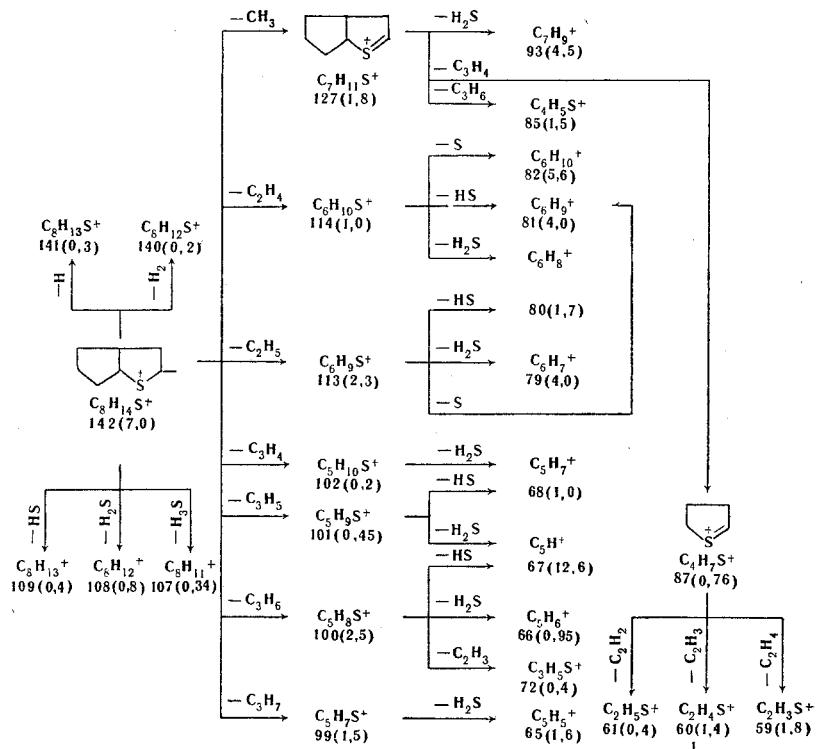

V. I. Dronov and V. P. Krivonogov

UDC 547.735 + 547.818.1.07

2-Allylcyclopentane-1-thiol is cyclized by treatment with 75% sulfuric acid and with UV light to 2-methyl-1-thiabicyclo[3,3,0]octane and 1-thiabicyclo[4,3,0]nonane, respectively. The cyclization is stereospecific.

Reaction of cyclopentene episulfide (I) with allylmagnesium bromide (II), followed by intramolecular cyclization of the resulting 2-allylcyclopentane-1-thiol (III), has given 1-thiabicyclo[4,3,0]nonane (IV) and 2-methyl-1-thiabicyclo[3,3,0]octane (V), according to the scheme which we have put forward [1].

The sulfide IV has been obtained from the thiol both by UV irradiation and by prolonged keeping under nitrogen. Cyclization of III by 75% sulfuric acid proceeds with great difficulty to give the sulfide V in 13% yield.


According to the GLC results, the cyclization of both III and 2-allyloxyhexanethiol [1] is stereospecific. According to [2-4], reaction of cycloolefin episulfides with II should give the trans-2-allyl-1-cycloalkanethiols, which on cyclization afford the trans-thiabicycloalkanes. This is confirmed by the low yield of V, since systems composed of two trans-fused five-membered rings are highly strained [2-4]. The position of the methyl group in V has not been established.

The structure of the sulfides IV and V is confirmed by their IR spectra. In IV, the absorption maxima correspond to vibrations of the C-H bond in the CH_2 and CH groups (2854-2954, 1433-1449, and 1334 cm^{-1}). In the spectrum of V, the maxima correspond to the stretching (2964 and 2876 cm^{-1}) and deformational (1376 cm^{-1}) vibrations of the C-H bond in CH_3 , to the stretching (2926 cm^{-1}) and deformational (1458 cm^{-1}) vibrations of the C-H bond in CH_2 , and to the deformational (1325 cm^{-1}) vibrations of the CH group. In the IR spectra of IV and V, maxima occur which are characteristic of the skeletal vibrations of cyclic sulfides [5], at 1261 and 1258 cm^{-1} , respectively. The absence of a band at 720-790 cm^{-1} shows the absence of a CH_2 group in a straight chain, which is further evidence for the cyclic structure of IV and V.

The structure of IV and V is also proved by their mass spectra (see Fig. 1). The breakdown of V under electron impact takes place according to the scheme given in [6]. Breakdown of IV occurs in a similar way.

† For Part I, see [1].

Institute of Chemistry, Bashkir Branch, Academy of Sciences of the USSR, Ufa. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1185-1187, September, 1970. Original article submitted February 18, 1969.

Breakdown of 2-Methyl-1-thiabicyclo[3.3.0]octane (the figures in parentheses, with the ionic mass values, indicate the peak intensities as a percentage of the total ion current).

EXPERIMENTAL

Cyclopentene Episulfide (I) was obtained according to [7], bp 68-69° (66 mm), n_D^{20} 1.5250, d_4^{20} 1.0502. Found: MR_D 29.18. Calculated, MR_D 29.52.

2-Allylcyclopantanethiol (III) was obtained by the method described for 2-allylcyclohexanethiol [1]. Reaction of 10 g (0.1 mole) of I with allylmagnesium bromide (prepared from 19.2 g [0.8 g-atom] of magnesium and 36 g (0.3 mole) of allyl bromide in 200 ml of dry ether) afforded, after drying the reaction mixture and removal of the ether, 8 g of a fraction bp 89-94° (33 mm). The thiol was not further characterized in view of its rapid cyclization.

Cyclization of 2-Allylcyclopantanethiol (III). a) Cyclization of III was complete after standing in a nitrogen atmosphere at room temperature for two weeks. Vacuum distillation of the cyclization product gave a fraction with bp 97.5-98.5° (25 mm), n_D^{20} 1.5195 and d_4^{20} 1.0078, containing 98% of IV and 2% of V by GLC (carried out on a column of length 4 m, diameter 4 mm, packed with 10% Apiezon L on Celite-545). The carrier gas was hydrogen. The overall yield of IV and V was 46%, calculated on I.

b) Cyclization of III with 75% sulfuric acid was carried out by the method described by us for 2-allylcyclohexanethiol [1], except that after stirring III for 3 h with sulfuric acid at room temperature, the mixture was diluted with cooling with twice its volume of water, then heated for 3 h at 40-50°, and kept overnight. The mixture was then steam-distilled, the distillate saturated with sodium chloride and extracted with ether, and the extract dried over sodium sulfate. Removal of the ether, followed by vacuum distillation of the residue, gave a fraction, bp 90-91.5° (23 mm), n_D^{20} 1.5100, d_4^{20} 0.9918, which contained 93% of V and 7% of IV by GLC. The overall yield of V and IV was 13%.

Fig. 1. Mass spectra. 1) 1-Thiabicyclo[4, 3, 0]nonane; 2) 2-methyl-1-thiabicyclo[3, 3, 0]octane.

c) An ether solution of III was irradiated with a PRK-2 mercury-quartz lamp until a negative test for mercaptan was obtained (7-8 h). Vacuum distillation of the cyclization product gave a fraction, bp 92.5-93.5° (19 mm), n_D^{20} 1.5196, containing 97% of IV and 3% of V by GLC. The overall yield of IV and V was 42%.

IV was purified via its mercury complex, and was obtained chromatographically pure; bp 101-102° (25 mm); n_D^{20} 1.5212; d_4^{20} 1.0099; mp 7.6°. Found: C 67.8; H 9.9%; MR_D 42.8 $C_8H_{14}S$. Calculated: C 67.61; H 9.86%; MR_D 42.66. Mercuric chloride complex, mp 160.5-161°. Found: Hg 48.5%. $C_8H_{14}S \cdot HgCl_2$. Calculated: Hg 48.51%. Methiodide, mp 142.8-143.3° (sublimed). Found: I 44.8%. $C_9H_{17}IS$. Calculated: I 44.70%. Sulphone, mp 70-70.5°. Found: C 54.9; H 8.3%. $C_8H_{14}O_2S$. Calculated: C 55.17; H 8.05%.

After purification via the mercury complex, V possessed the following contents: bp 89-90° (23 mm); n_D^{20} 1.5091; d_4^{20} 0.9904. Found: C 67.6; H 9.8%; MR_D 42.8. The mercuric chloride complex had mp 106.5-107°. Found: (for the molecular formula, see above) (IV and its derivatives Hg 48.4%. Methiodide, mp 105-107°. Found: I 44.8%. Sulphone, bp 312° (753 mm) (determined by the Sivolobov method. The compound boiled with decomposition); n_D^{20} 1.5030. Found: C 54.94; H 8.04.

LITERATURE CITED

1. V. I. Dronov, V. P. Krivonogov, and V. S. Nikitina, KhGS, 335 (1970).
2. E. E. van Tamelen, J. Am. Chem. Soc., 73, 3444 (1951).
3. F. L. Bordwell and H. M. Andersen, J. Am. Chem. Soc., 75, 4959 (1953).
4. L. Goodman and B. R. Baker, J. Am. Chem. Soc., 81, 4924 (1959).
5. G. F. Bol'shakov and E. A. Glebovskaya, Heteroorganic Compounds of Jet Fuels [in Russian], Leningrad, 119 (1962).
6. E. S. Brodskii, R. A. Khmel'nitskii, A. A. Polyakova, and G. D. Gal'pern, Neftekhimiya, 9, 146 (1969).
7. L. Goodman, A. Benitez, and B. R. Baker, J. Am. Chem. Soc., 80, 1680 (1958).
8. Houben-Weyl, Methods of Organic Chemistry [in Russian], Moscow, 585 (1963).